
Squish the Stack
Rampart is a javascript based complete stack development
environment which is extremely resource stingy. This entire site is
running on a Raspberry Pi Zero (version 1). Rampart is also fast
and portable; it will run on nearly any *nix OS and benchmarks
nearly as fast as Nginx on static content. It's also free to use,
modify, and redistribute in most use cases.

We're not kidding about it being resource stingy. Here's the Rampart HTTP
server running on my machine as I'm coding this web page on an Intel Mac with
almost all of its modules loaded:

Full Text Search with
SQL
We've licensed the same fulltext and
relational database engine that

HTTP, HTTPS, and
Websockets
Rampart's HTTP/HTTPS server is
based on a modded libevhtp_ws and

https://rampart.dev/

powered eBay's auction search and
100's of other large sites across the
internet. The SQL engine is especially
good at serving database driven
content. It is also realtime so that new
or changed documents are instantly
searchable. We've included a CSV
parser so you can migrate data into it
as well.

more info...

libevent2. Benchmarks showed that
libevhtp outperformed Nginx (which
we really respect), so that's why we
chose it. We haven't benchmarked it
against Node yet but it's reasonable to
assume we'll keep pace while
consuming a lot less of the host's
resources

more info...

CURL Module
Rampart provides a robust interface to
the Curl library, giving you the ability to
fetch URLs, post forms, or send email
and attachments easily. It includes all
the functionality you've come to
expect with the Curl command line
utility, but from within Rampart
JavaScript. The combination of this
module and the HTML Parser provide a
fairly robust data scraping tool set.

more info...

Threading
Rampart threads let you run functions
not only asynchronously but in also in a
multi-threaded environment. Running
a function in a thread is as easy as
running one in a setTimeout(). Each
thread is run in its own isolated
JavaScript interpreter and variables are
easily shared at any time via a
clipboard. Running an asynchronous
callback in a thread when a variable is
copied to the clipboard is also possible.

more info...

REDIS Client
We've included direct REDIS
integration for all the obvious reasons
one might want to use it. We also
crafted a custom XREAD command to
work like PUB/SUB so you can, in
combination with WebSockets, create
chats, channels and DMs that don't
require the extra step of saving,
retrieving and sorting messages from a
message queue.

more info...

Lightning Memory-
mapped Database
LMDB is a fast, truly ACID compliant
RAM based key-value store. It's read
biased and serves binary or text data
really well. We've added automatic
conversion to/from CBOR and JSON to
make it that much easier. It's not as
fast as Redis when in full ACID mode,
but then again it'll never lose data
when Redis might. LMDB startup is
relatively instant, even on large

https://www.thunderstone.com/about-us/our-customers/
https://rampart.dev/docs/rampart-sql.html
https://rampart.dev/docs/rampart-server.html#the-rampart-server-http-module
https://rampart.dev/docs/rampart-curl.html
https://rampart.dev/docs/rampart-thread.html#rampart-thread-onget
https://rampart.dev/docs/rampart-thread.html
https://rampart.dev/docs/rampart-redis.html#xread-auto-async
https://rampart.dev/docs/rampart-redis.html
https://rampart.dev/

databases, and it's persistent to disk in
case of unexpected interruption.

more info...

Markdown Engine
The markdown engine uses the Cmark
library to implement the CommonMark
syntax. This allows you to efficiently
convert to HTML on the server side
and have symmetry with the
CommonMark client-side javascript
module. This is handy for things like
blog entries, documentation, and CMS
page markup. Note: We intend to
eventually build and use our own CMS
using it.

more info...

ROBOTS.TXT
Rampart gives you the power to crawl
and scrape in a very flexible manner.
However, with great web crawlers
come great responsibilities. The
ROBOTS.TXT module uses Google's
robots.txt code so you can avoid
abusing sites that do not wish to have
portions of their content crawled.

more info...

HTML Parser
Using a modded version of HTMLTidy
Rampart provides the ability to
manipulate and traverse HTML in a
manner somewhat akin to JQuery, but
on the server side. This module can
also clean up and format messy or
compacted HTML after it's been
CURL'ed from somewhere. Note: I used
this module several times to locate errant
imbalaced <div>s when writing this site.

more info...

Cryptography
The OpenSSL library module provides
the ability to safely encrypt and
decrypt stuff generate crypto-hashes,
generate RSA key pairs, and more. It
also provides cryptographic quality
random and Gaussian random number
generation. Sorry, it doesn't generate
crypto-currency though. Note: for
speedy non-crypographic hashing see
the non-cryptographic hashes.

more info...

Networking
The rampart-net module provides
access to low level, asynchronous
TCP/IP calls for creating client and
server applications, as well as name
resolution. The functions are

Python
Yes we embedded the c-python
interpreter into a Rampart module. It
allows you to load python modules, run
python scripts and manipulate python
variables in JavaScript without a

https://rampart.dev/docs/rampart-lmdb.html
https://commonmark.org/
https://commonmark.org/
https://rampart.dev/docs/rampart-cmark.html
https://rampart.dev/docs/rampart-robots.html
https://www.html-tidy.org/
https://rampart.dev/docs/rampart-html.html
https://rampart.dev/docs/rampart-utils.html#hash
https://rampart.dev/docs/rampart-crypto.html
https://rampart.dev/

somewhat similar to node's net
functions, which makes learning easier
if you are familiar.

more info...

writing a line of python. Why? Python
has a gazillion modules and support for
many, many databases. If you need
functionality that Rampart doesn't (yet)
provide, this can get your there. See
this example for a quick rundown of
what is possible.

more info...

OS Utilities
All the common commands and
functions required to manipulate files
and talk to the OS are in here
(hopefully): printf(), sprintf(),
fopen(), fread(), fwrite(),

hexify(), dehexify(), trim(),

stat(), exec(), shell(),

kill(), mkdir(), rmdir(),

sleep()... and a lot more.

more info...

Fast HyperLogLog, non-
crypto Hash, & Random
We implemented our own super-fast
HyperLogLog algorithm for on-line
counting of distinct things. e.g. unique
IP addresses. It's substantially faster
and more accurate than Redis's. Our
HLL uses Google's City Hash algorithm
internally, but we also expose City
Hash and its cousin Murmur Hash, as
well as a fast pseudo random number
generator based on XorShift64.

more info...

More to come
We've been working on assembling
Rampart for a beta release since the
start of Covid. Some stuff hasn't made
it into it yet, but we are continuing to
add features and by no means are we
nearly done adding things. There are
also tutorials and unsupported extras
which can give you an idea of the
direction we are heading.

Why did we do this?

https://rampart.dev/docs/rampart-net.html
https://rampart.dev/docs/rampart-python.html#example-use-importing-data
https://rampart.dev/docs/rampart-python.html
https://rampart.dev/docs/rampart-utils.html
https://en.wikipedia.org/wiki/HyperLogLog
https://en.wikipedia.org/wiki/Xorshift
https://rampart.dev/docs/rampart-utils.html#rand-hash-and-hyperloglog
https://rampart.dev/docs/tutorialtoc.html
https://rampart.dev/docs/rampart-extras.html
https://rampart.dev/

While NodeJS is extremely popular and NPM provides a ton of add-ons quickly, on
the whole it's pretty fat. By the time you configure MariaDB and Apache Lucene
you've eaten a day (or more) and a considerable amount of resources on the host
machine. Additionally, it's not that much fun.

In creating Rampart we sought to create a "full stack" that was simple and fast to
download, configure, and start creating whatever application you had in mind in a
time frame measured in minutes rather than days. User machines, phones, and IOT
devices need to serve their primary role without impediment. Rampart's job is to
support that role and not get in the way. OTOH if you dedicate a machine or cluster
to a Rampart task you'll get a lot more done with a lot less investment.

We chose the DukTape javascript engine over the V8 engine because while V8 is
very fast, it's also kind of a RAM and CPU pig. Our philosophy was to do everything
difficult or complex in C and let javascript be the fun-glue. That way it really didn't
matter what engine was chosen. Almost every module is coded in C as is the
DukTape interpreter. This makes everything extremely portable with a minimum
amount of fuss. We include the Babel transpiler to drag DukTape into ECMAScript
2015+ land. Rampart checks at runtime if you've changed anything and then
transpiles automatically behind the scenes.

Who are we?

Moat Crossing Systems LLC, the makers of Rampart, is a couple of guys who
between them have developed software and applications that have served many
billions of pages of database backed content on the internet. We had some summer
help from a couple of Columbia students who helped up keep tabs on the "current-
think" and coded some of the OS Utility functions. It all started in January of 2020
with a phone conversation where we were bitching about how un-fun web
development had become, and how resource heavy everything seemed to be. A
comment was made that if we could full-text index Wikipedia and serve it up on a
Raspberry Pi Zero, then we'd have something unique that people might want. So
that's what we did.

We hope you will give this thing a try. Contact us here or at
 if you have questions or need help with something.s @rtpu ap tmr veo a .dp r

https://rampart.dev/apps/site/run_demo.html?demo=wikipedia
https://rampart.dev/apps/site/run_demo.html?demo=wikipedia
https://rampart.dev/apps/site/contact.html
https://rampart.dev/

Maybe later on we'll get more sophisticated with our support infrastructure, but for
now one of us will try to get back to you as soon as possible.

The Raspberry Bush

Here's a photo of our fancy server farm before it was installed in a rack at the
ISP. There's four Pi Zeros and two Pi 4s. The four Zeros are mirror copies of
one another just in case *stuff* happens. The two Pi 4's allow us to do
development and builds a bit faster than the Zeros allow us. The "bush" is
proxied by an NginX server running on a fairly large old Xeon machine. This
made certificate managment and other things somewhat easier on us.

Please note that we have no particular bias towards producing software
principally for the Raspberry Pi. The whole purpose for its usage here is to
demostrate how much Rampart can do with minimimal resources. That way
you can extrapolate how fast and efficient it will be on larger Intel, AMD, and
ARM platforms.

https://rampart.dev/

 |>> |>>

 __|__ __|__

 \ | / \ /

 | ^ | | ^ |

 __| o |__________| o |__

 [__|_|__|(rp)| | |______]

____[|||||||||||||__|||||||||]____

RAMPART

© 2024 Moat Crossing Systems. All rights reserved. View JS Source

https://rampart.dev/apps/editor/?file=/apps/site.js
https://rampart.dev/

